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Abstract 

Linear ECG-lead transformations (LELTs) are used to 

estimate unrecorded leads by applying a number of 

recorded leads to a LELT matrix. Such LELT matrices are 

commonly developed using a training dataset and linear 

regression analysis. An important performance metric of 

LELTs is the subject-to-subject variability (SSV) of their 

estimation performance. In this research, we assess the 

relationship between an increasing training set size (from 

n=10 to n=370 subjects) and the SSV of LELTs.  

A total of 200 LELT matrices were developed for each 

training sets size. The developed LELT matrices and 12-lead 

ECG data of a testing dataset (n=123 subjects) were used 

for the estimation of Frank VCGs. Root-mean-squared-

error (RMSE) values between recorded and estimated Frank 

VCG leads were used for the quantification of the estimation 

performance. The SSV associated with each LELT matrix 

was quantified as the standard deviation of the 

corresponding RMSE values. This was followed by an 

analysis of the relationship between the training set size and 

the associated SSV values.  

Increasing the training set size from 10 to 180, to 160 and 

to 200 subjects, for Frank VCG leads X, Y and Z 

respectively, was associated with a reduction of the 

observed SSV. Further increases in training set size were 

found to only have a marginal effect on the observed SSV.   

 

 

1. Introduction 

Linear electrocardiographic (ECG) lead trans-

formations (LELTs) are used to estimate or derive 

unrecorded target leads by applying a number of recorded 

basis leads to a LELT matrix [1], [2].  A LELT matrix is 

commonly developed using a training dataset that is 

assembled using ECG data from different subjects.  One 

set of target leads and basis leads is included for each 

subject in the training dataset.  Multivariate linear 

regression analysis is typically used to develop the LELT 

matrixes from the ECG data of the training dataset [1], [3]. 

LELT matrices are frequently used to derive target leads 

that are not recorded in clinical practice but are thought to 

provide additional prognostic or diagnostic value. 

Examples of such target leads are the leads of the Frank 

VCG [2] – [4] or the so-called vessel specific leads [5]. The 

12-lead ECG is frequently used as the basis lead set of 

LELT matrices.  This is the because it is the most widely 

adopted ECG recording format [6] and therefore allows for 

an easy integration of LELT derived target leads into 

clinical practice without the need of recording additional 

non-standard ECG leads. 

It is desirable that LELT matrices are capable of 

producing accurate estimates of the target leads for all 

members of the target population.  Increasing the size of 

the training set up to a certain limit has been shown to 

increase the mean estimation performance of LELTs [7]. 

However, well performing LELT matrices should not only 

have an acceptable mean estimation performance, they 

should ideally also perform equally well for all members 

of the target population.  The subject-to-subject variability 

(SSV) of the estimation performance is therefore an 

important performance metric of LELTs. 

Recording a large training set in an attempt to minimize 

the SSV of a new LELT matrix is potentially a time and 

cost expensive procedure. It would therefore be desirable 

to have an understanding of the relationship between the 

training set size and the SSV of LELTs. However, an 

analysis of this relationship has, to the best of our 

knowledge, not previously been reported in the literature. 

The aim of our research is twofold. First, we aim to assess 

the relationship between the size of the training set and the 

SSV of LELT matrices. Second, we aim to quantify a 

sufficient training set size that allows for the development of 

LELT matrices with low associated levels of SSV. 

 

2. Material and methods 

2.1. Study population 

Our study population was composed of 228 normal 
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subjects and 265 subjects with myocardial infarction.  

Random sampling was used to partition the study 

population into a test dataset (𝐷𝑇𝑒𝑠𝑡) and a training dataset 

(𝐷𝑇𝑟𝑎𝑖𝑛). The ECG data of 123 subjects was used to 

assemble 𝐷𝑇𝑒𝑠𝑡. Data from the remaining 370 subjects 

was used to assemble training datasets of varying size. 

Table 1 details the composition of 𝐷𝑇𝑒𝑠𝑡 and 𝐷𝑇𝑟𝑎𝑖𝑛. 
 

Table 1.  Composition of the test data (𝐷𝑇𝑒𝑠𝑡) and the 

train data (𝐷𝑇𝑟𝑎𝑖𝑛). 

 Normal MI Total 

𝐷𝑇𝑒𝑠𝑡 57 66 123 

𝐷𝑇𝑟𝑎𝑖𝑛 171 199 370 
Notes. Normal, Subjects with no abnormalities in their 

ECGs; MI, Subjects with myocardial infarction. 

 

2.2. BSPM data 

One body surface potential map (BSPM) was recorded 

for each of the 493 subjects in the study population. Each 

BSPM used in this research contains electrocardiographic 

data of 120 BSPM leads.  A representative average  

QRS-T complex was calculated for each of the 120 BSPM 

leads.  Three of the 120 leads were recorded from 

electrodes placed on the right and left wrist and the left 

ankle (VR, VL and VF respectively).  Electrodes situated 

at 81 anterior and 36 posterior locations were used to 

record 117 thoracic leads.  All thoracic leads were recorded 

with reference to the Wilson central terminal (WCT).  A 

comprehensive description of the recording procedure can 

be found in [8]. A Laplacian 3D interpolation procedure 

[9] was applied to the 117 thoracic BSPM leads.  This was 

performed to obtain body surface potentials at the locations 

of the 352 Dalhousie torso [10] nodes.  Body surface 

potentials from electrode locations that were not a direct 

subset of the 352 Dalhousie torso nodes were obtained 

using linear interpolation [11]. 

 

2.2. Target and basis leads of the LELTs 

The standard 12-lead ECG is the most widely adopted 

ECG recording format [6].  This has made the eight 

independent leads I, II, V1 to V6 of the standard 12-lead 

ECG a popular basis lead set that is used in different 

LELTs. We have therefore, used the eight independent 

leads of the standard 12-lead ECG as the basis lead set of 

the LELT matrices that were assessed in this research. The 

leads of this basis lead set were extracted form the BSPM 

data of each subject in the study population.   

Currently, LELT matrices are used to estimate a variety 

of different target leads [1],[5],[12]. The aim of our 

research was to assess the relationship between the training 

set size and the SSV of LELTs such that the findings 

provide an insight into this relationship that is independent 

of the particular target lead. In an attempt to obtain a target 

lead independent inside of this relationship, we have 

chosen the three orthogonal leads of the Frank VCG [4] as 

the target lead set. This choice was based upon the heart-

vector model [13] of the cardiac electrical activity that 

allows the expression of any ECG lead as a weighted sum 

of the three orthogonal Frank VCG leads. 

Average QRS-T complexes of the basis leads and target 

leads were extracted from the interpolated BSPM data. 

More precisely, body surface potentials on the right wrist, 

the left wrist, the left ankle and from the location of the six 

precordial electrodes were used for the determination of 

the basis leads. In addition, body surface potentials at the 

A, C, E, F, H, I and M electrode locations of the Frank lead 

system [4] were used to determine the target leads using a 

matrix of published coefficients [14]. 

 

2.3. Development of the LELT matrices 

The data in 𝐷𝑇𝑟𝑎𝑖𝑛 was used to assemble training 

datasets of different sizes.  More precisely, training 

datasets staring from n = 10 to n = 360 subjects were 

generated in steps of 10 subjects.  Random sampling with 

replacement was used to compose 200 different instances 

of each training set size using the data in 𝐷𝑇𝑟𝑎𝑖𝑛.  The 

different training dataset instances were used to generate a 

total of 200 LELT matrices for each training set size.  The 

LELT matrices that allow for the estimation of the Frank 

VCG from the standard 12-lead ECG were developed 

using the multivariate linear regression based approach in 

(1). 

𝑨𝑽𝑪𝑮𝒊𝒎
 = ( 𝑩𝑳𝒊

𝑻
𝒎

 ∙ 𝑩𝑳𝒎
 

𝒊
 )

−𝟏
∙ 𝑩𝑳𝒊

𝑻
𝒎

 ∙ 𝑻𝑳𝒎
 

𝒊. (1) 

Where [∙]𝑻  and [∙]−𝟏denote the transpose and the 

inverse of a matrix respectively, 𝑨𝑽𝑪𝑮𝒊𝒎
  refers to a 8 × 3 

matrix of transformation coefficients that allows for the 

transformation of the basis leads into the target leads, 𝑚 ∈
{10, … ,370} denotes the size of the training dataset, 𝑛 

refers to the number of QRS-T sample values in the 

training dataset of size 𝑚, 𝑖 ∈ {1, … ,200} denotes the 

instance of the training dataset that was used for the 

development of 𝑨𝑽𝑪𝑮𝒊𝒎
 , 𝑻𝑳𝒎

 
𝒊 refers to a 𝑛 × 3 matrix 

that contains 𝑛 sample values of the target leads and 𝑩𝑳𝒎
 

𝒊 

refers to a 𝑛 × 8 matrix that contains 𝑛 sample values of 

the basis leads. 

 

2.4. Derivation of the target leads 

The 𝑨𝑽𝑪𝑮𝒊𝒎
  matrices were used to derive the target 

leads of the 123 subjects in 𝐷𝑇𝑒𝑠𝑡.  This was performed 

using the approach in (2) and for all LELT matrices with 

𝑖 ∈ {1, … ,200} and 𝑚 ∈ {10, … ,370}. 

𝒅𝑻𝑳𝒊𝒎
 = 𝑩𝑳 

 ∙ 𝑨𝑽𝑪𝑮𝒊𝒎
 . (2) 

Where 𝑨𝑽𝑪𝑮𝒊𝒎
 , 𝑚 and 𝑖 are as defined in (1), 𝑩𝑳 

  is a 

𝑛 × 8 matrix that contains the n sample values of the QRS-T 

complex from the basis leads of one subject in 𝐷𝑇𝑒𝑠𝑡 and 

𝒅𝑻𝑳𝒊𝒎
  is 𝑛 × 3 matrices that contain the derived target leads.  
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2.5. Performance assessment 

The relationship between the training set size and the SSV 

of the associated LELT matrices was assessed as detailed 

subsequently.   

First, root mean square error (RMSE) values were 

calculated between the QRS-T complexes of the recorded and 

the derived target leads. This was performed for each 

𝑨𝑽𝑪𝑮𝒊𝒎
  matrix and for each of the 123 subjects in 𝐷𝑇𝑒𝑠𝑡.  

Second, the SSV of the estimation performance of each 

𝑨𝑽𝑪𝑮𝒊𝒎
  matrix was quantified by calculating the standard 

deviation of the associated RMSE values. This was performed 

separately for each of the three Frank VCG leads. The 

outcome of this assessment was a 200 × 37 matrix of 

 𝑽𝑪𝑮𝑚
𝑆𝑆𝑉

𝑖
  elements.  Where each  𝑽𝑪𝑮𝑚

𝑆𝑆𝑉
𝑖
  contains a SSV 

value for each of the three Frank VCG leads, 𝑖 ∈
{1, … ,200} and 𝑚 ∈ {10, … ,370}  respectively denote the 

instance and size of the training dataset hat was used for the 

development of the 𝑨𝑽𝑪𝑮𝒊𝒎
  matrix associated with the 

values in  𝑽𝑪𝑮𝑚
𝑆𝑆𝑉

𝑖
 . Third, the median and the span 

(difference between the 97.5th and 2.5th percentile) of the 

SSV values were calculated for each of the Frank leads. This 

was performed across the 200 different SSV values associated 

with each training set size 𝑚 ∈ {10, … ,370}.  

 

2.6. Quantification of a sufficient training size 

Well preforming LELT matrices should ideally be able to 

estimate the target leads of all subjects in the target population 

with a similar level of accuracy and therefore show low levels 

of SSV. It follows, that the training set size has to be chosen 

such that each particular instance of the training set leads to a 

LELT matrix with similar low levels of SSV. Based upon 

these considerations we define a sufficient training set size as 

one that fulfills the following two requirements.   

First, the training set size 𝑁1 ∈ {10, … ,370} must ensure 

that the developed LELT matrices are associated with low 

SSV values. This corresponds to a low median value 

calculated across the 200 different SSV values associated with 

the 𝑖 ∈ {1, … ,200} different training set instances of a given 

size 𝑁1. We therefore quantified 𝑁1 as the smallest size at 

which the right-tailed bootstrapped hypothesis test 

(significance level alpha = 0.05; 20000 bootstrap replicates) 

for the hypothesis H01 was rejected.  

H01: The observed reduction in the median SSV value 

between the training set size of 10 and the training 

set size of 𝑁1 is ≤ 95 % of the observed reduction in 

the median SSV value observed between training set 

sizes of 10 and 370 subjects. 

Second, the training set size 𝑁2 ∈ {10, … ,370} must 

ensure that all 𝑖 ∈ {1, … ,200} different instances of the 

training set produce LELT matrices with similar SSV values.  

This corresponds to a low span of the SSV values across 

the 𝑖 ∈ {1, … ,200} different training set instances of a 

given training set size 𝑁2. We therefore quantified 𝑁2 as 

the smallest size at which the right-tailed bootstrapped 

hypothesis test (significance level alpha = 0.05; 20000 

bootstrap replicates) for the hypothesis H02 was rejected. 

H02: The observed reduction in the span of the SSV 

values between a training set size of 10 and a 

training set size of 𝑁2 is ≤ 95 % of the observed 

reduction in the span of the SSV values observed 

between training set sizes of 10 and 370 subjects. 

The two hypothesis tests for H01 and H02 were 

conducted separately for each of the three Frank leads and 

for training set sizes 𝑁1, 𝑁2 ∈ {10, … ,370}. We defined a 

sufficient training set size for each Frank lead as the size 

𝑁∗ = max (𝑁1, 𝑁2).  

 

3. Results 

A summary of the findings from our analysis is provided 

in Table 2. In addition, an example of the relationship 

between an increasing training set size and the SSV of a 

LELT is provided in Figure 1. 

Table 2. Median and span of SSV values for training set 

sizes 10, 𝑁1, 𝑁2, 370 and value of the sufficient training set 

size 𝑁∗ for derived Frank VCG leads X, Y and Z. 

derived 

lead 
10a 𝑁1

b 𝑁2
b 370a 𝑁∗

 

X 
 150 180  

180 
[18.9; 6.0] [17.3; 0.9] [17.4; 0.7] [17.4; 0.4] 

Y 
 160 160  

160 
[13.3; 7.0] [11.7; 0.7] [11.7; 0.7] [11.6; 0.5] 

Z 
 160 200  

200 
[26.8; 12.4] [22.8; 1.5] [22.7; 1.1] [22.6; 1.1] 

a[median; span] of the SSV values; btraining set size [median; 

span] of the SSV values; all SSV values are in µV they were 

quantified using the ECG data in DTest and based upon LELT 

matrices that were developed using 200 bootstrap samples of size 

10, 𝑁1, 𝑁2 and 370 obtained from DTrain. 

Figure 1. Median and span of the SSV values associated 

with Frank VCG lead X in µV quantified using the ECG data 

in DTest and based upon 200 different LELT matrices that 

were derived for each training set size 𝑚 ∈ {10, … ,370} 

using 200 bootstrap samples of the ECG data in DTrain. 
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4. Discussion and conclusion 

In this research, we have assessed the influence of the 

training set size on the SSV of LELT matrices.  In addition, 

we have identified a sufficient training set size for the 

development of LELT matrices as one that leads to a low 

median SSV value and ensures a low span of SSV values 

across different training set instances.   

The relationship between the training set size and the 

median and span of the SSV value was found to follow a 

similar profile for Frank leads X, Y and Z.  An example of 

this relationship is, for Frank VCG lead X depicted in 

Figure 1.  

From Figure 1 it can be seen, that both median and span 

of the SSV decrease with increasing training set size.  

However, after an initial phase of improvement, median 

and span of the SSV can be seen to only marginally 

decrease with additional increases in the size of the training 

dataset. Based upon the relationship depicted in Figure 1 

one can speculate that this marginal improvement 

continues for training set sizes larger than 370.  

The size 𝑁∗, after which a further increase in the training 

set size is associated with only marginally improvements 

in the median and the span of the SSV was assessed and is 

provided in Table 2. For Frank VCG lead X the size 𝑁∗ was 

found to be 180 subjects. The span of the SSV was, at this 

training set size, found to be low (0.7 µV) when compared 

to the median SSV value (17.4 µV). This indicates that any 

particular training set of size 180 will lead to a LELT 

matrix with a similar SSV. In addition, the findings in 

Table 2 indicate for Frank VCG lead X that no notable 

reduction in the median SSV value can be achieved by 

increasing the training set size from 𝑁∗ = 180 to 370 

subjects.  Based on the findings for the median and the span 

of the SSV at training set sizes of 180 and 370 we conclude 

that an increase in the training set size beyond 𝑁∗ = 180 

subjects has no notable effect on the SSV of a LELT that 

derives Frank VCG lead X from the standard 12-lead ECG.  

Similar findings can be made for training set sizes 𝑁∗=160 

for Frank VCG lead Y and 𝑁∗=200 for Frank VCG lead Z. 

The heart-vector model [13] of the cardiac electrical 

activity postulates that any ECG lead can be expressed as 

a weighted sum of the orthogonal Frank VCG leads.  We 

therefore speculate that a training set size of 𝑁∗=200 

(largest training set size 𝑁∗ of all Frank VCG leads in  

Table 2) should be sufficient for reducing the SSV of any 

LELT matrix that is used to derive any given ECG lead 

from the standard 12-lead ECG.  

A limitation of this research is that the assessed LELT 

matrices were developed and tested on ECG data that was 

obtained from two equally represented cohorts (normal 

subjects and subjects with myocardial infarction). Whether 

the presence of different additional cardiac disorders in the 

training and testing datasets would have an influence on 

the training set size 𝑁∗ has not been assessed in this 

research. 
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